Wärmebehandlung von Stahl (3): Das Fe-C-Diagramm 13.09.2010, 11:55
Das Fe-C-Diagramm ist ein in der Stahlmetallurgie gebräuchliches Schaubild, das Aufschluss über die Vorgänge beim Erhitzen einer Fe-C-Legierung gibt. Ferrit, Perlit, Zementit, Austenit und Martensit sind die Bestandteile, die hier beschrieben werden.
3. und 4. Ausbildungsjahr
Fortsetzung von »Wärmebehandlung von Stahl (2)«
Das Fe-C-Diagramm
Stahlgefüge bei Raumtemperatur
Um das beschriebene Geschehen übersichtlich darzustellen, hat die Metallurgie-Forschung ein spezielles Diagramm entwickelt: das Eisen-Kohlenstoff-Schaubild. Mit seiner Hilfe lässt sich ermitteln, in welchem Zustand sich ein unlegierter Stahl mit bekanntem Kohlenstoffgehalt bei einer bestimmten Temperatur befindet, und welche Gefügeveränderungen bei Temperaturänderungen zu erwarten sind.
Das Bild »Fe-C-Diagramm, Ausschnitt« zeigt den uns interessierenden Bereich im Fe-C-Diagramm, der im Folgenden beschrieben wird. Betrachten wir zuerst das Bild unten links. Es berücksichtigt den Gefügeaufbau von Stählen bei Raumtemperatur. Stahl mit Null % C: Hier liegt reines Eisen vor. Die Metallurgie hat diesem Gefüge den Namen Ferrit gegeben. Ferrit ist ein relativ weiches Material. Stahl mit minimalen C-Gehalt, z. B. 0,1 %: Die wenigen C-Atome verbinden sich mit Fe-Atomen zu Fe3C = Eisencarbid, das wegen seiner außerordentlichen Härte auch als Zementit bezeichnet wird. Da sich wegen des geringen C-Gehalts nur wenig Zementit bilden kann, bleibt der Stahl insgesamt noch sehr weich. Um die Zementitkerne herum gruppieren sich Fe-Atome. Diese Gruppierung ist abgeschlossen, wenn der C-Anteil 0,8 % beträgt. Betrachtet man ein solches Gefüge unter dem Mikroskop, dann schillert es in vielen Farben; wegen seiner Ähnlichkeit mit Perlmutt erhielt es den Namen Perlit. Perlit ist ein mittelhartes Gefüge.
Stahl mit 0,8 % C: Das gesamte Gefüge besteht aus Perlit.
Stahl mit mehr als 0,8 % C: Der C-Gehalt ist jetzt so hoch, dass immer mehr Zementitkerne vorhanden sind. Sie können kein Fe mehr an sich binden: Das Stahlgefüge wird zunehmend härter.
Erwärmung des Gefüges
Was geschieht nun, wenn man die bei Raumtemperatur beschriebenen Gefügebestandteile erhitzt?
Ferrit: Das α-Eisen wird bei 911 °C in γ-Eisen umgewandelt (Punkt G). Perlit hat die Eigenschaft, dass es sich bei 723 °C in γ-Fe umwandelt und dabei in seinem Innern ein C-Atom aufnimmt. Dieses Gefüge erhielt nach einem englischen Metallurgen den Namen Austenit.
Zementit: Zementit bleibt auch oberhalb der Linie G-S-E Zementit (die Buchstaben G, S und E wurden von den Metallurgen so festgelegt).
Härtegefüge
Beim Härten (= Glühen + Abschrecken) geschieht folgendes: Man erhitzt das Stahlteil, das ja einen bestimmten C-Gehalt besitzt, so, dass sich alle Gefügebestandteile in Austenit umwandeln. Die Zementitanteile müssen nicht umgewandelt werden, weil sie bereits hart genug sind. Besitzt der Stahl z. B. 0,9 % C, dann muss er entsprechend dem Fe-C-Diagramm über 723 °C hinaus erhitzt werden, damit sein Perlit zu Austenit wird. Im γ-Kristall des Austenits hat sich, wie wir schon erfuhren, ein C-Atom eingenistet. Beim normalen, langsamen Abkühlen würde es wieder herauswandern, wobei sich der γ-Würfel in einen α-Würfel zurückbilden würde. Schreckt man das Gefüge jedoch plötzlich ab, dann hat das C-Atom keine Zeit, das γ-Fe zu verlassen: Es bleibt eingesperrt. Da sich beim Abschrecken γ-Fe in α-Fe umwandelt, steckt nun das C-Atom im kleinen α-Würfel und verspannt diesen nach allen Seiten. Diese Verspannung macht sich nach außen hin als Härte bemerkbar. Das neue Härtegefüge hat auch einen Namen: es wird als Martensit bezeichnet. Pate dieser Gefügebezeichnung ist Martens.
(Anmerkung: Zugunsten des besseren Verständnisses wurde die obige Beschreibung ebenso stark vereinfacht wie die Darstellung der Schaubilder und Gitter).
Wird mit dem Beitrag »Wärmebehandlung von Stahl (4)« fortgesetzt
Siehe auch »Wärmebehandlung von Stahl (2)« und »Wärmebehandlung von Stahl (1)«